1.10 » The particle’s polar angle is ¢ = wt, so = R cos(wt) and y = Rsin(wt) or
r = X Rcos(wt) + ¥ Rsin(wt).
Differentiating, we find that r = —XwRsin(wt) + ¥ wR cos(wt) and then
F= —%w’R cos(wt) — yszsin(wt) = —w'r = —W?RFT.
That is, the acceleration is antiparallel to the radius vector and has magnitude a = w?R =
v?/ R, the well known centripetal acceleration.

1.17 xx (a) Let us start with the 2 component of r X (u+ v). From the definition (1.9),
we see that
[rx (u+V)]x = ry(u+v.) —r.(uy+vy) = (rytt.—rauy) +(ryv.—r.vy) = (r X 0)a+(r X v),.

Since the y and z components follow in the same way, we conclude that r x (u +v) =
rxu+rxyv.

(b) Starting again from (1.9), we find for the  component
d d ds, ds, dr, dr, ds dr
az(r X 8)pi= (—ﬁ('ry.s:—rzsy) = (7‘1,? - ,‘ZW)+(ESZ - —dt—sy) = (r X + FTie s)‘T
This is the 2 component of the desired identity. Since the y and z components follow in
exactly the same way, our proof is complete.

d d d
1.19 %% —[a-(vxr)|= d—?-(v X T) +a'EZ(V xr)=a (vxr)+a(VXxr+vxr).
The final term a-(v X ) is zero because ¥ = v and v x v = 0. The second to last term is
a-(axr) =0, because a x r is perpendicular to a, so their scalar product is zero. This leaves
us with the requested identity.




1.29 »  When we write out Equations (1.25) and (1.26) for the four particles, we get four

equations:
F12 +F13 +F14 + F‘I‘Xt

=Fy + Fy3 + Fyy + F5*
=F; +Fz +F3 + F§
p1 = (net force on particle 4) = Fyy + Fyo + Fy3 + F§*.
Adding these four equations, we find for P= P1 + P2+ Ps + P4,
= (Fio+Fis+Fuy) + (For + Fos + Foy) + (F31 + Fso + F3y) + (Fay + Fyp + Fy3)
+ (F + F§* + F§* + F{).

p1 = (net force on particle 1)
P2 = (net force on particle 2)
ps = (net force on particle 3)

(i)
This corresponds to Equation (1.27). The twelve terms on the first line of the right side can
be rearranged to give

(F12 + Fa1) + (F13+ F31) + (Fis + Fa1) + (Fa3 + F) + (Fou + Fao) + (Faq + Fg3) =0

since each of the six pairs is zero by Newton’s third law. Thus Equation (ii) for P reduces

to
P s Fi‘xt‘ _I_ ngt‘ _I_ F\gxt. + Fixt o Fext

which is the required Equation (1.29).

1.30 x Since mass 2 is at rest, the initial total momentum is just P;, = m;v. The final
total momentum is Pg, = (m; +my)v’. Equating these two and solving for v/, we find that
v =vmy/(my +my).

1.35 x In the absence of air resistance, the net force on the ball is F = mg, and with the
given choice of axes, g = (0,0, —g). Thus Newton’s second law, F = m¥, implies that ¥ = g,
or
&=0; y=0, and 2= —g.

The initial velocity has components v,, = v, cos8, v, = 0, and v,. = v,sinf, and we can
choose the initial position to be the origin. The first of the above equations can be integrated
once to give & = v,,, and again to give z(t) = v,,t. In the same way, the y equation gives
y(t) = 0, and the 2 equation gives z(t) = v,.t — % gt?. The ball returns to the ground when
z(t) = 0 which gives t = 2v,./g. Substituting this time into the expression for z(t) gives the
range, range = 20y, 0., /9.




1.38 » The two forces on the puck are its weight mg and the normal force N of the incline.
With the suggested choice of axes, N = (0,0, N) and g = (0,—gsinf, —gcos#). Thus
Newton’s second law reads
ma =0
mi=N+mg or my = —mgsinf
mzZ = N —mgcosf
By integrating the y equation twice, we find that y = ve,t — %th sind. Thus the time

to return to the line y = 0 is t = 2v,,/(¢sinf) and the distance from O at that time is
T = Upgl = 200V, /(g sinb).

1.39 %x @ =w,tcosf—Lgt?sing, y=wv.tsinf —fgt*cosd, z = 0. When the ball returns
to the plane, y is 0, which implies that ¢ = 2v, sinf/(g cos ¢). Substituting this time into x
and using a couple of trig identities yields the claimed answer for the range R. To find the
maximum range, differentiate R with respect to 6 and set the derivative equal to zero. This
gives 6 = (m — 2¢)/4, and substitution into R (plus another trig identity) yields the claimed
value of R, ..

1.46 xx (a) As seen in the inertial frame S the puck moves in a straight line with ¢ = 0
and r = R — v,t
(b) Asseen in 8, 7' =r = R—v,t and ¢’ = ¢ —wt = —wt. This path is sketched in the

answer to Problem 1.27. Initially, the puck moves inward with speed v, but also downward
with speed wR. It curves to its right, passing through the center and continuing to curve to
the right until it slides off the turntable.

1.49 »x There are two forces on the puck, the net normal force of the two cylinders and
the force of gravity. So F = Np — mgz. Since the puck is confined between the cylinders,
p = R, a constant. The three components of F = ma are:

F,=m(j—p¢*)  or N =-mR¢*

Fy=m(pp +2pp) or 0=mR¢

F,=m2 or —mg=msz.
The p equation tells us the magnitude and direction (inward) of the normal force. The ¢
equation tells us that ¢ is constant. (This is actually conservation of angular momentum.)
Thus ¢> = w, a constant, and hence ¢ = ¢, + wt. The puck moves around the cylinder at a
constant rate w. The z equation tells us that z = v,, — gt and hence that z = z,+ v, — % gt2.
That is, the vertical motion is precisely that of a body in free fall. The resulting path is a
helix of downward increasing pitch.




